Grid operations

Basic differential operations

There are a variety of (purely) grid-based operators that are useful for carrying out calculations in immersed layer problems. We will demonstrate a few of them here. We will start by generating the cache, just as we did in Immersed layer caches

using ImmersedLayers
using Plots

Set up a grid and cache

Δx = 0.01
Lx = 4.0
xlim = (-Lx/2,Lx/2)
ylim = (-Lx/2,Lx/2)
g = PhysicalGrid(xlim,ylim,Δx)
PhysicalGrid{2}((405, 405), (202, 202), 0.01, ((-2.0100000000000002, 2.02), (-2.0100000000000002, 2.02)), 1)

We still generate a cache for these operations, but now, we only supply the grid. There are no immersed surfaces for this demonstration.

cache = SurfaceScalarCache(g,scaling=GridScaling)
Surface cache with scaling of type GridScaling
  0 point data of type ScalarData{0, Float64, Vector{Float64}}
  Grid data of type Nodes{Primal, 405, 405, Float64, Matrix{Float64}}

To demonstrate, let's generate a Gaussian

p = zeros_grid(cache)
xg, yg = x_grid(cache), y_grid(cache)
p .= exp.(-(xg∘xg)-(yg∘yg))
Nodes{Primal, 405, 405, Float64, Matrix{Float64}} data
Printing in grid orientation (lower left is (1,1))
404×404 Matrix{Float64}:
 0.00029738   0.000309547  0.000322148  …  0.00029738   0.000285634
 0.000309609  0.000322277  0.000335396     0.000309609  0.00029738
 0.000322277  0.000335463  0.000349118     0.000322277  0.000309547
 0.000335396  0.000349118  0.00036333      0.000335396  0.000322148
 0.000348979  0.000363257  0.000378044     0.000348979  0.000335194
 0.000363039  0.000377893  0.000393276  …  0.000363039  0.0003487
 0.000377591  0.00039304   0.000409039     0.000377591  0.000362676
 0.000392647  0.000408712  0.000425349     0.000392647  0.000377138
 0.000408222  0.000424924  0.000442221     0.000408222  0.000392098
 0.00042433   0.000441691  0.000459671     0.00042433   0.000407569
 ⋮                                      ⋱               
 0.00042433   0.000441691  0.000459671  …  0.00042433   0.000407569
 0.000408222  0.000424924  0.000442221     0.000408222  0.000392098
 0.000392647  0.000408712  0.000425349     0.000392647  0.000377138
 0.000377591  0.00039304   0.000409039     0.000377591  0.000362676
 0.000363039  0.000377893  0.000393276     0.000363039  0.0003487
 0.000348979  0.000363257  0.000378044  …  0.000348979  0.000335194
 0.000335396  0.000349118  0.00036333      0.000335396  0.000322148
 0.000322277  0.000335463  0.000349118     0.000322277  0.000309547
 0.000309609  0.000322277  0.000335396     0.000309609  0.00029738

Now, let's generate the gradient of these data

v = zeros_gridgrad(cache)
grad!(v,p,cache)
plot(v,cache)
Example block output

We can then compute the derivative of this data

divv = zeros_grid(cache)
divergence!(divv,v,cache)
plot(divv,cache)
Example block output

Convective derivatives

And finally, let's compute convective derivatives. First, we will compute

\[\mathbf{v}\cdot\nabla p\]

For this operation, we create a special additional cache using ConvectiveDerivativeCache. This extra cache holds additional memory for making the calculation of the convective derivative faster if we compute it often.

cdcache = ConvectiveDerivativeCache(cache)
vdp = zeros_grid(cache)
@time convective_derivative!(vdp,v,p,cache,cdcache)
  0.001086 seconds (18 allocations: 3.078 KiB)

Plot it

plot(vdp,cache)
Example block output

Now, let's compute

\[\mathbf{v}\cdot\nabla\mathbf{v}\]

For this, we create a cache for VectorGridData, and a new instance of ConvectiveDerivativeCache to go along with it.

vcache = SurfaceVectorCache(g,scaling=GridScaling)
vdv = zeros_grid(vcache)
cdvcache = ConvectiveDerivativeCache(vcache)
@time convective_derivative!(vdv,v,vcache,cdvcache)
  0.002948 seconds (55 allocations: 8.875 KiB)

Plot it

plot(vdv,vcache)
Example block output

Finally, let's compute

\[(\curl\mathbf{v})\times\mathbf{v}\]

For this, we create a cache called RotConvectiveDerivativeCache to go along with it.

w = zeros_gridcurl(vcache)
curl!(w,v,vcache)
wv = zeros_grid(vcache)
cdrcache = RotConvectiveDerivativeCache(vcache)
@time w_cross_v!(wv,w,v,vcache,cdrcache)
Edges{Primal, 405, 405, Float64, Vector{Float64}} data
u (in grid orientation)
404×405 Matrix{Float64}:
 0.0   0.0   0.0   0.0   0.0   0.0  …   0.0   0.0   0.0   0.0   0.0  0.0
 0.0   0.0   0.0   0.0   0.0   0.0      0.0   0.0   0.0   0.0   0.0  0.0
 0.0   0.0   0.0   0.0   0.0   0.0      0.0   0.0   0.0   0.0   0.0  0.0
 0.0   0.0   0.0   0.0   0.0   0.0      0.0   0.0   0.0   0.0   0.0  0.0
 0.0   0.0   0.0   0.0   0.0   0.0      0.0   0.0   0.0   0.0   0.0  0.0
 0.0   0.0   0.0   0.0   0.0   0.0  …   0.0   0.0   0.0   0.0   0.0  0.0
 0.0   0.0   0.0   0.0   0.0   0.0      0.0   0.0   0.0   0.0   0.0  0.0
 0.0   0.0   0.0   0.0   0.0   0.0      0.0   0.0   0.0   0.0   0.0  0.0
 0.0   0.0   0.0   0.0   0.0   0.0      0.0   0.0   0.0   0.0   0.0  0.0
 0.0   0.0   0.0   0.0   0.0   0.0      0.0   0.0   0.0   0.0   0.0  0.0
 ⋮                             ⋮    ⋱         ⋮                      
 0.0  -0.0  -0.0  -0.0  -0.0  -0.0  …  -0.0  -0.0  -0.0  -0.0  -0.0  0.0
 0.0  -0.0  -0.0  -0.0  -0.0  -0.0     -0.0  -0.0  -0.0  -0.0  -0.0  0.0
 0.0  -0.0  -0.0  -0.0  -0.0  -0.0     -0.0  -0.0  -0.0  -0.0  -0.0  0.0
 0.0  -0.0  -0.0  -0.0  -0.0  -0.0     -0.0  -0.0  -0.0  -0.0  -0.0  0.0
 0.0  -0.0  -0.0  -0.0  -0.0  -0.0     -0.0  -0.0  -0.0  -0.0  -0.0  0.0
 0.0  -0.0  -0.0  -0.0  -0.0  -0.0  …  -0.0  -0.0  -0.0  -0.0  -0.0  0.0
 0.0  -0.0  -0.0  -0.0  -0.0  -0.0     -0.0  -0.0  -0.0  -0.0  -0.0  0.0
 0.0  -0.0  -0.0  -0.0  -0.0  -0.0     -0.0  -0.0  -0.0  -0.0  -0.0  0.0
 0.0  -0.0  -0.0  -0.0  -0.0  -0.0     -0.0  -0.0  -0.0  -0.0  -0.0  0.0
v (in grid orientation)
405×404 Matrix{Float64}:
 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  …   0.0   0.0   0.0   0.0   0.0  0.0
 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0     -0.0  -0.0  -0.0  -0.0  -0.0  0.0
 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0     -0.0  -0.0  -0.0  -0.0  -0.0  0.0
 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0     -0.0  -0.0  -0.0  -0.0  -0.0  0.0
 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0     -0.0  -0.0  -0.0  -0.0  -0.0  0.0
 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  …  -0.0  -0.0  -0.0  -0.0  -0.0  0.0
 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0     -0.0  -0.0  -0.0  -0.0  -0.0  0.0
 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0     -0.0  -0.0  -0.0  -0.0  -0.0  0.0
 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0     -0.0  -0.0  -0.0  -0.0  -0.0  0.0
 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0     -0.0  -0.0  -0.0  -0.0  -0.0  0.0
 ⋮                        ⋮              ⋱               ⋮                
 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0     -0.0  -0.0  -0.0  -0.0  -0.0  0.0
 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0     -0.0  -0.0  -0.0  -0.0  -0.0  0.0
 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0     -0.0  -0.0  -0.0  -0.0  -0.0  0.0
 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0     -0.0  -0.0  -0.0  -0.0  -0.0  0.0
 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  …  -0.0  -0.0  -0.0  -0.0  -0.0  0.0
 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0     -0.0  -0.0  -0.0  -0.0  -0.0  0.0
 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0     -0.0  -0.0  -0.0  -0.0  -0.0  0.0
 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0     -0.0  -0.0  -0.0  -0.0  -0.0  0.0
 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0      0.0   0.0   0.0   0.0   0.0  0.0

Plot it

plot(wv,vcache)
Example block output

Grid operator functions

CartesianGrids.divergence!Function
divergence!(p::Nodes{Primal/Dual},v::Edges{Primal/Dual},cache::BasicILMCache)
divergence!(p::Nodes{Primal/Dual},v::Edges{Primal/Dual},sys::ILMSystem)

Compute the discrete divergence of v and return it in p, scaling it by the grid spacing if cache (or sys) is of GridScaling type, or leaving it as a simple differencing if cache (or sys) is of IndexScaling type.

source
CartesianGrids.grad!Function
grad!(v::Edges{Primal/Dual},p::Nodes{Primal/Dual},cache::BasicILMCache)
grad!(v::Edges{Primal/Dual},p::Nodes{Primal/Dual},sys::ILMSystem)

Compute the discrete gradient of p and return it in v, scaling it by the grid spacing if cache (or sys) is of GridScaling type, or leaving it as a simple differencing if cache (or sys) is of IndexScaling type.

source
grad!(v::EdgeGradient{Primal/Dual,Dual/Primal},p::Edges{Primal/Dual},cache::BasicILMCache)
grad!(v::EdgeGradient{Primal/Dual,Dual/Primal},p::Edges{Primal/Dual},sys::ILMSystem)

Compute the discrete gradient of edge data p and return it in v, scaling it by the grid spacing if cache (or sys) is of GridScaling type, or leaving it as a simple differencing if cache (or sys) is of IndexScaling type.

source
CartesianGrids.curl!Function
curl!(v::Edges{Primal},s::Nodes{Dual},cache::BasicILMCache)
curl!(v::Edges{Primal},s::Nodes{Dual},sys::ILMSystem)

Compute the discrete curl of s and return it in v, scaling it by the grid spacing if cache (or sys) is of GridScaling type, or leaving it as a simple differencing if cache (or sys) is of IndexScaling type.

source
curl!(w::Nodes{Dual},v::Edges{Primal},cache::BasicILMCache)
curl!(w::Nodes{Dual},v::Edges{Primal},sys::ILMSystem)

Compute the discrete curl of v and return it in w, scaling it by the grid spacing if cache (or sys) is of GridScaling type, or leaving it as a simple differencing if cache (or sys) is of IndexScaling type.

source
CartesianGrids.convective_derivative!Function
convective_derivative!(vdp::Nodes{Primal},v::Edges,p::Nodes{Primal},base_cache::BasicILMCache,extra_cache::ConvectiveDerivativeCache)

Compute the convective derivative of p with velocity v, i.e., $v\cdot \nabla p$, and return the result in vdp. The result is either divided by unity or the grid cell size depending on whether base_cache is of type IndexScaling or GridScaling. This version of the method uses extra_cache of type ConvectiveDerivativeCache.

source
convective_derivative!(vdw::Nodes{Dual},v::Edges,w::Nodes{Dual},base_cache::BasicILMCache,extra_cache::ConvectiveDerivativeCache)

Compute the convective derivative of w with velocity v, i.e., $v\cdot \nabla w$, and return the result in vdw. The result is either divided by unity or the grid cell size depending on whether base_cache is of type IndexScaling or GridScaling. This version of the method uses extra_cache of type ConvectiveDerivativeCache.

source
convective_derivative!(vdu::Edges,v::Edges,u::Edges,base_cache::BasicILMCache,extra_cache::ConvectiveDerivativeCache)

Compute the convective derivative of u, i.e., $v\cdot \nabla u$, and return the result in vdu. The result is either divided by unity or the grid cell size depending on whether base_cache is of type IndexScaling or GridScaling. This version of the method uses extra_cache of type ConvectiveDerivativeCache.

source
convective_derivative!(vdv::Edges,v::Edges,base_cache::BasicILMCache,extra_cache::ConvectiveDerivativeCache)

Compute the convective derivative of v, i.e., $v\cdot \nabla v$, and return the result in vdv. The result is either divided by unity or the grid cell size depending on whether base_cache is of type IndexScaling or GridScaling. This version of the method uses extra_cache of type ConvectiveDerivativeCache.

source
ImmersedLayers.convective_derivativeFunction
convective_derivative(v::Edges{Primal},p::Nodes{Primal},base_cache::BasicILMCache)

Compute the convective derivative of p with velocity v, i.e., $v\cdot \nabla p$. The result is either divided by unity or the grid cell size depending on whether base_cache is of type IndexScaling or GridScaling.

source
convective_derivative(v::Edges{Dual},w::Nodes{Dual},base_cache::BasicILMCache)

Compute the convective derivative of w with velocity v, i.e., $v\cdot \nabla w$. The result is either divided by unity or the grid cell size depending on whether base_cache is of type IndexScaling or GridScaling.

source
convective_derivative(v::Edges,base_cache::BasicILMCache)

Compute the convective derivative of v, i.e., $v\cdot \nabla v$. The result is either divided by unity or the grid cell size depending on whether base_cache is of type IndexScaling or GridScaling.

source
ImmersedLayers.w_cross_v!Function
w_cross_v!(vw::Edges{Primal},w::Nodes{Dual},v::Edges{Primal},base_cache::BasicILMCache,extra_cache::RotConvectiveDerivativeCache)

Compute the term w \times v, with vorticity w and velocity v, and return the result in vw. This version of the method uses extra_cache of type RotConvectiveDerivativeCache.

source
ImmersedLayers.w_cross_vFunction
w_cross_v(w::Nodes{Dual},v::Edges{Primal},base_cache::BasicILMCache)

Compute the term w \times v, with vorticity w and velocity v.

source
ImmersedLayers.laplacian!Function
laplacian!(w::GridData,s::GridData,sys::ILMSystem)

Compute the Laplacian of grid data s, and divide the result by unity or by the grid cell size, depending on whether sys has IndexScaling or GridScaling, respectively, and return the result as w.

source
laplacian!(w::GridData,s::GridData,cache::BasicILMCache)

Compute the Laplacian of grid data s, and divide the result by unity or by the grid cell size, depending on whether cache has IndexScaling or GridScaling, respectively, and return the result as w.

source
ImmersedLayers.inverse_laplacian!Function
inverse_laplacian!(w::GridData,sys::ILMSystem)

Compute the in-place inverse Laplacian of grid data w, and multiply the result by unity or by the grid cell size, depending on whether sys has IndexScaling or GridScaling, respectively.

source
inverse_laplacian!(w::GridData,cache::BasicILMCache)

Compute the in-place inverse Laplacian of grid data w, and multiply the result by unity or by the grid cell size, depending on whether cache has IndexScaling or GridScaling, respectively.

source
inverse_laplacian!(sol::GridData,rhs::GridData,cache::BasicILMCache)

Compute the iinverse Laplacian of grid data rhs, multiply the result by unity or by the grid cell size, depending on whether cache has IndexScaling or GridScaling, respectively, and return the result as sol.

source

This page was generated using Literate.jl.